
Trudio: Dynamic Analysis Approach for Obfuscated Programs

Abstract—When a new malware is found, security re-
searchers should first understand the contents of the malware
to prepare countermeasure. However, this is a difficult task
since the malware writers distort the contents of malwares
using code obfuscation techniques. Nowadays, it is getting
more dfficult to understand a malware since the obfuscation
techniques are getting more sophisticated and diverse. Thus,
it is infeasible to develop reversing techniques for every ob-
fuscation technique. Nonetheless, since an obfuscated program
inevitably has the same semantics with the original program,
monitoring the dynamic behaviors of the program will help the
analyzers to figure out the inside. In other word, to disclose the
semantics of an obfuscated program, it will be useful to analyze
its run trace, which is the record of executed instructions
and changes in status. We presents a program analysis tool
Trudio, which analyzes a program based on its run traces and
transforms the program into more analyzable shape using the
information acquired from the run traces. With our tool the
malware analyzers can save time to understand an obfuscated
malware. This paper presents the ideas and algorithms that
are implemented in Trudio and proves that these methods can
help analysis by experiments.

Keywords-security, reverse engineering, program analysis

I. INTRODUCTION

When a new malware is introduced, security researchers
should first understand the contents of the malware to
prepare countermeasure. This is a difficult task since the
malware writers distort the contents of malwares to mislead
the analyzers.

The methods to distort the contents of a program are
called code obfuscation. Traditional code obfuscation in-
cludes dead code insertion, control flow distortion, instruc-
tion substitution, and data encoding. These methods increase
the analysis time of the target program, but since they
typically preserve the overall structure of the program,
experienced analyzers can understand the program in short
time.

However, the obfuscation techniques applied to the mal-
wares become more sophisticated and diverse. Nowadays,
the malware writers are even using the techniques called
virtualization obfuscation. A program obfuscated with the
virtualization obfuscation contains a virtual machine running
a random instruction set, and the original program code
encoded into byte codes of the instruction set of the em-
bedded virtual machine. The obfuscated program will run
the virtual machine with the byte codes, so the obfuscated
program is semantically equivalent to the original program.
However, the structure of an obfuscated program will be

completely different from the original code because the
obfuscated program runs the virtual machine.

Several researches have tried to reverse obfuscation tech-
niques [1], [2]. The reversing methods developed for a
specific obfuscation have strict assumptions on the obfus-
cation technique. Those methods are generally effective
for the obfuscated programs fitted into the assumptions of
the reversing method. However, those reversing algorithms
cannot be applied to a revised obfuscation technique that
does not meet the assumptions. For instance, after Rolles
introduced a reversing method for virtualization obfuscation
[1], obfuscator VMProtect [3] was updated to avoid the
reversing method.

Moreover, the number of malwares is exponentially in-
creasing. In the first half of the year 2011, more than one
million malwares running on Windows are newly identified
in the market [4]. Thus, it is infeasible to develop reversing
techniques for every obfuscation technique applied in each
malware.

Even if a program is heavily obfuscated, the program
inevitably has the same semantics with the original program.
From this fact, we noticed that monitoring the dynamic
behaviors of an obfuscated program can help to figure out
the inside of the program.

Inspired by this observation, we designed and imple-
mented Trudio, which is a program analysis tool based
on dynamic approach. Trudio has three purposes: structure
analysis, semantic analysis, and optimization. The structure
analysis reveals how the program is organized. Through this
analysis, analyzers can find the actual control flow of the
program and figure out which obfuscation techniques are ap-
plied to the program. The semantic analysis aims to show the
semantics of the program. Analyzers can see the algorithms
in the target program via this analysis. The optimization
transforms the target program into more analyzable shape
by removing unnecessary instructions.

Trudio does not aim to automatically reverse a specific
obfuscation technique, but it is rather a general purpose
program analysis tool. However, Trudio will save the anal-
ysis time of the malware analyzers since they expect to
understand the malwares not to have the source code or
unobfuscated version of the malwares.

This paper presents the ideas and algorithms embodied
in Trudio. However, the methods presented in this paper
can be considered as general approaches to understand of a
program based on dynamic analysis. This paper also presents
the experimental proof that Trudio appropriately reveals the

structure and the semantics of obfuscated programs and
optimization is effective.

This paper is organized as follows. Section II describes
the overview of dynamic analysis approach and terminolo-
gies. Section III defines the structure of run trace and the
terminologies. Section IV introduces the structure analysis
methods in detail. Section V discusses the details of the
semantic analysis methods. Section VI explains the methods
to optimize the obfuscated program into more analyzable
shape. Section VII describes the implementation detail of the
trace tool and Trudio. Section VIII shows the experimental
results. Section IX compares our work to the previous works.
Section X concludes the paper with its limitations and
possible solutions.

II. OVERVIEW

A. Dynamic Approach

Even for a heavily obfuscated executable program must
have the eventually equivalent behavior with the original
program. Thus, the semantics of the program can be revealed
if we observe the dynamic behaviors of the program. By
analyzing the dynamic behaviors, we can acquire more
accurate information about the structure of the program and
transform the program into more analyzable shape.

The dynamic analysis comprises the following steps:
1) Extract the dynamic behaviors and generate a run trace

from the target program. The run trace will save the
executed machine instructions and the logs accessing
registers or memory.

2) Analyze and visualize the extracted run trace to figure
out the structure of the target program.

3) Analyze and visualize the run trace to understand the
semantics of the target program.

4) Optimize the target program into more analyzable
shape.

B. Trudio

We designed and implemented Trudio, which is the pro-
gram analysis tool based on dynamic approach. This tool
includes the implementations of the analysis and optimiza-
tion algorithms presented in this paper.

Trudio does not have the tracing function, and the tracing
tool is separately developed. Thus, Trudio takes a run trace
extraceted from the tracing tool as input, and it covers step
2 through step 4 in the dynamic analysis workflow defined
above. Therefore, you can investigate a run trace of the target
program in detail.

Trudio targets on the executable programs for Microsoft
Windows on Intel Architecture 32-bit (IA32). Though Trudio
targets on a specific environment, most discussions in this
paper are written not assuming a specific environment.
However, some discussions mention about the architecture
assumptions when it heavily depends on the implementation
characteristic of the environment.

Trudio is available at [5].

C. Motivating Example

Before beginning technical discussions, let us show a
motivating example. We wrote a program, which calculates
and prints a fibonacci number using recursion. We applied
virtualization obfuscation on the recursion function using
VMProtect. The obfuscated program is much more compli-
cated than the original program, and the obfuscated program
was more than 100 times slower than the original program.
It seemed to be almost impossible to analyze statically.

Nevertheless, we could observe that the semantics ex-
tracted by the semantic analysis from two programs were
identical. Expression tree is the data structure designed to
show the calculation process of a specific value. Figure 1
shows the expression trees generated by automatic tracking
from the printed value of the program, and you can find
out Figure 1a and 1b are identical. It means the extracted
semantics of two programs were identical.

The expression trees are introduced in section V-C, and
the detailed procedure to generate these expression trees are
presented in section VIII-C.

III. RUN TRACE AND TERMINOLOGIES

A run trace is the record of an execution of the target
program. A run trace contains the information of executed
machine instructions and the change of status, i.e. the values
in registers and memory.

Basically, a run trace has a list of executed instructions.
We call each of these executed instructions an instance of
the trace, and the list is named as the full trace instance
list. Those are called instances to differentiate from instruc-
tions of the trace. The full trace instance list may contain
several instances of the same instruction. In other word, an
instruction generates one or more instances, and an instance
belongs to an instruction.

Each instruction is either inner or external. Inner instruc-
tion is from the target program, and external instruction is
from modules loaded from other than the target program. An
inner instruction represents one machine instruction, but an
external instruction represents one external routine. It infers
that an external instruction may represent multiple machine
instructions.

An inner instruction has the information of the memory
address where the instruction was placed and the byte
sequence of the machine instruction. An external instruction
saves the external routine name with the file path where the
routine was loaded from.

An instance has the pointer to the instruction which it
belongs and the index in the full trace instance list. Each
instance also has a list of instance accesses.

The instance accesses represent the status accessed by
the instance. The status of the system means the values in
registers and memory. An instance access is tagged as one

(a) Original (b) Obfuscated

Figure 1. Expression trees of recfibo

of read, writing, or written, and we call it as the type of the
instance access. If an access is tagged as read, it indicates
the instance has read where the instance access points out.
When an access is tagged as writing or written, it means
that the instance has written to register or memory where
the access indicates. A writing access must be paired to
another written access in the same instance, and vice versa.
A writing access saves the value at the indicated location
before the instance wrote a new value, and a written access
has the value the instance has written.

An inner instruction also has a list of instruction accesses.
Since each inner instruction represents its own machine in-
struction, the instance accesses of instances of an instruction
must have the same format, that is, each instance must have
the same number of read, writing, and written accesses.
An instruction access is the abstraction of the matched
instance accesses among those belonging to the instances of
the instruction. An external instruction can cover multiple
machine instructions, so the format of instance accesses
of the instances may not be consistent. Therefore, external
instructions do not have instruction accesses.

Figure 2 shows the structure of run trace.
In order to describe the algorithms using the run trace,

we defined some functions about instances, instructions, and
their accesses.

• trace(k : Integer) returns the kth instance in the full
trace instance list assuming the full trace instance list
has zero-based index.

Instances

Instructions

Instance AccessesInstruction Accesses

Figure 2. Structure of run trace

• index(i : Instance) returns the index of i in the full
trace instance list.

• instruction(i : Instance) returns the instruction
where i belongs.

• place(I : Instruction) returns where the instruction I
is placed, either inner or external.

• instances(I : Instruction) returns the set of in-
stances belonging to I .

• opcode(I : Instruction) returns the operation code
of the machine instruction of I . I must be an inner
instruction.

• accesses(i : Instance) returns the list of instance

accesses belonging to i.
• accesses(I : Instruction) returns the list of instruc-

tion accesses belonging to I . I must be an inner
instruction.

• instance(a : InstanceAccess) returns the instance
where a belongs.

• instruction(A : InstructionAccess) returns the in-
struction where A belongs.

• instructionaccess(a : InstanceAccess) returns the
instruction access where a belongs.

• instanceaccesses(A : InstructionAccess) returns
the set of instance accesses of A.

An instance access is always consecutive, so it always
reads or writes a continuous array of bytes from the address
space. Thus, an instance access saves the address of the first
item and the size of the accessing array. We defined the
functions to retrieve the information of instance access.
• type(a : InstanceAccess) returns the type of a, one

of read, writing, written.
• size(a : InstanceAccess) returns the accessing length

of a in integer.
• address(a : InstanceAccess) returns the first access-

ing address of a.
• addresses(a : InstanceAccess) returns the set of

accessing addresses. Since an instance access must
access address space consecutively, addresses(a) =
{address(a) + k|0 ≤ k < size(a)}.

• value(a : InstanceAccess) returns value of a as an
integer. The implementation of this function may be
different by the endian setting of the target computer
architecture.

• value(a : InstanceAccess, b : Address) returns the
value of the byte read from or written to address b by
instance access a. b must be in addresses(a).

• written(a : InstanceAccess) returns the written in-
stance access paired to a. a must be writing instance
access.

• writing(a : InstanceAccess) returns the writing
instance access paired to a. a must be written instance
access.

• The functions type, size, written, writing are simi-
larly defined for instruction accesses.

An address is defined as a pair of address space and
integer number representing the location in the address
space. An address space is a consecutive array of bytes,
so a location pointed by an address has a byte value.
Address space is either register or memory, and each space is
assumed to be separated. To fetch the property of an address,
we defined the following functions.
• space(a : Address) returns the address space of a,

either register or memory.
• location(a : Address) returns an integer representing

the location of a in the address space.

• For an address a and an integer k, a + k means
(space(a), location(a) + k).

In some computer architectures, the registers may not be
directly mapped into an integer. In that case, you can map a
register into an arbitrary integer number. Of course, different
registers should not be overlapped. For instance, Trudio
maps EAX register into 0 through 3 and EBX into 4 through
7. To improve the readability, we may use the notation like
(register, eax), and this address indicates the first location
of the register EAX, that is, (register, eax) = (register, 0).

The following names are associated with corresponding
meanings throughout this paper.
• T is the full trace instance list.
• Tn is the length of T .
• Z is the set of all instructions, that is,

Z =
⋃

i∈T {instruction(i)}
• Zi is the set of all inner instructions, that is,

Zi = {I ∈ Z|place(I) = inner}
In the algorithms listed in this paper, we will use the

notation A⇐ B for two sets A and B. This means adding
the items in B into A. In other word, A⇐ B is equivalent
to A← A ∪B.

IV. STRUCTURE ANALYSIS OF OBFUSCATED PROGRAM

The first step to analyze a program is understanding its
structure. This section introduces the methodologies to un-
derstand the structure of the target program by the dynamic
approach.

A. Control Flow Graph

Control flow graph (CFG) is a graph to show the structure
of a program. In general term, control flow graph consists
of vertices corresponding to basic blocks in the program and
the edges indicating the possible control flows from block
to block.

You can generate a control flow graph from a program
using static analysis. However, there are some problems in
static control flow analysis.

First of all, static control flow analysis may not detect
indirect branches correctly. An indirect branch instruction
jumps to the address that may be different in every execu-
tion. Since the target address of an indirect branch is decided
while it runs, static analysis may not properly predict the
target addresses.

Secondly, statically generated CFG will be distracted by
control flow obfuscation. Control flow obfuscation inserts
pointless control flow instructions including the branches
that always jump to the same location. A basic block in
the typical definition of CFG is a sequence of instructions
whose instructions inside are neither jump instruction nor
jump target, so a control flow instruction can only be located
at the end of a basic block. Therefore, statically generated
CFG has many dispensable vertices.

Dynamic approach is based on its real run trace, so it
already knows the jump targets of indirect jumps. Moreover,
it can figure out whether a branch is meaningless because
it already knows that the branch actually has changed the
control flow or not.

Inspired by this observation, we made a new definition of
control flow graph for dynamic analysis. The new definition
is different from the original in two aspects. First, a basic
block is a sequence of instructions that have actually run
in sequential order without jumping out or in. Second, an
edge in the original CFG represents the possibility of control
transfer, but an edge of the new definition means that the
program control has really been transferred in that way.

To describe the control flow graph generation algorithm,
we need to define two functions in and out.
• in(I : Instruction) returns the set of instructions that

have been executed right before I , that is,
in(I) =

⋃
k∈g(I){instruction(trace(k − 1))} where

g(I) =
(⋃

j∈instances(I){index(j)}
)
− {0}

• out(I : Instruction) returns the set of instructions
which have been executed right after I , that is,
out(I) =

⋃
k∈g(I){instruction(trace(k + 1))} where

g(I) =
(⋃

j∈instances(I){index(j)}
)
− {Tn − 1}

A new CFG contains vertices and edges. Each vertex will
have a basic block, and an edge is represented as a pair
of two vertices. The following describes the functions to
retrieve the information about the CFGs.
• block(i : Instruction) returns the block to which

instruction i belongs.
• instructions(b : BasicBlock) returns the list of

instructions in b.
Algorithm 1 shows the pseudocode to generate the control
flow graph.

B. Virtual Machine

This section discusses the case of the virtualization ob-
fuscation technique. A program obfuscated using the virtu-
alization obfuscation technique contains a virtual machine
(VM) running a random instruction set and the original
program code encoded into byte codes for embedded VM’s
instruction set. The obfuscated program virtually runs the
encoded code of the original program, so the behavior will
be identical to the original program. However, the shape
will be completely different since the obfuscated program
actually runs a virtual machine.

Virtual machines written for obfuscation purpose usually
have simple structures. A virtual machine has a virtual
program counter (VPC), a main VM routine, and several
handlers. VPC indicates the address where next byte code
to execute is located, and the main routine of VM reads a
byte code using VPC and finds the memory address where
the handler for the byte code is placed.

Algorithm 1 Control flow graph generation
CFGV ← {}
CFGE ← {}
tmp← {}
for i← 0 to Tn − 1 do

I ← instruction(trace(i))
if i = 0 then

new ← anew block
CFGV ⇐ {new}
Append I into new

else
Ip ← instruction(trace(i− 1))
if I /∈ tmp then

if |in(I)| 6= 1 or |out(Ip)| 6= 1 then
new ← anew block
CFGV ⇐ {new}
Append I into new

else
Append I into block(Ip)

end if
end if
if block(I) 6= block(Ip) then

CFGE ⇐ {(block(Ip), block(I))}
end if

end if
tmp⇐ {I}

end for
CFG = (CFGV , CFGE)

Main routines of VMs are generally have no branches
inside, so a main routine typically appears in one block, and
we call it main block of VM. We can find the main block
and handlers of a VM based on the following characteristics
of the main block.
• The number of execution is bigger than the other

blocks.
• The number of out edges and in edges in CFG is bigger

than the other blocks.
• The out edges from the main block indicate the byte

code handlers.
After finding the main block of a virtual machine, we
can find the handlers from its out edges. The instructions
fetching and decoding the byte codes can be found in
the block by tracking the instructions influencing the last
instruction of the main block.

C. Access Map

Access map shows the memory area where the selected
instruction has read or written.

This is particularly useful for a virtualization obfuscated
program to find the memory area where the byte codes are
located. If you find the instruction fetching the byte codes in

the main block, you can seek the byte code area by tracking
the memory area that the instruction accesses.

We can define the function access for this purpose.

• access(i : Instance) returns the set of addresses where
i accesses, that is,
access(i) =

⋃
a∈accesses(i) addresses(a)

• access(I : Instruction) is the abstraction of access
from instance to instruction, that is,
access(I) =

⋃
i∈instances(I) access(i)

Reversely, you also can find the instances or instructions
accessing a memory address.

• accessat(a : Address) returns the set of instructions
which access at a, that is,
accessat(a) = {I ∈ Zi|a ∈ access(I)}

V. SEMANTIC ANALYSIS OF OBFUSCATED PROGRAM

Trudio has the tool showing a memory map highlighting
the addresses access(i) for an instruction i selected by user.

A. Value History

Most instruction set architectures are designed to be
imperative, so the machine instructions change the status
of the system. Thus, the status is constantly changing while
a program is executed. And the changes are recorded in
run trace as instance accesses. So we can reenact the status
between instances.

For an address a and an integer 0 ≤ n < Tn, V a
n has

the value at address a right after the trace(n) executed. Vn

is the set of the available addresses right after the trace(n)
executed. Algorithm 2 shows the algorithm to calculate V .
Un is the set of addresses updated while processing the nth

trace.

Algorithm 2 Value history
for n← 0 to Tn − 1,

Un ← {}
for a ∈ accesses(trace(n)) do

if type(a) = written then
for k ∈ addresses(a) do

V k
n ← value(a, k)

Un ⇐ {k}
end if

end if
end for
if n > 0 then

for k ∈ Vn−1 − Un,
V k
n ← V k

n−1
end for

end if
end for

B. Dependency Tracker

If the value read by an instance access a1 is written by
another instance access a0, we say that a1 depends on a0
and a0 influences a1. We can represent these relationships as
a graph among the instance accesses. This graph shows the
data flow and the calculating process, that is, the semantics
or algorithm. We call this graph a dependency graph. The
dependency graph is a great tool to understand the behavior
of the program.

Let D be the dependency graph of the run trace.

• D = (DV , DE)
• DV is the set of all instance accesses
• DV =

⋃
i∈T accesses(i)

• DE : {(InstanceAccess, InstanceAccess)}
• ∀(f, s) ∈ DE , type(f) = written and type(s) = read
• (f, s) ∈ DE means that f influences s, i.e. s depends

on f .

We also need to define a overwriting graph W .

• W : {(InstanceAccess, InstanceAccess)}
• ∀(f, s) ∈W , type(f) = type(s) = written
• (f, s) ∈ W means that s has overwritten the value

written by f .

Before we define the algorithm to calculate DE and W , we
should define a dictionary named O first. For an address
a and an integer 0 ≤ n < Tn, Oa

n returns the instance
access which has most recently written to the address a
before trace(n). On is the set of the addresses where Oa

n is
available. Assume O−1 = {}. Let O be called overwritten
dictionary. Algorithm 3 shows the algorithm to calculate
the overwritten graph W and the overwritten dictionary O.
Algorithm 4 shows the algorithm to generate dependency
graph using the calculated overwritten dictionary O.

Algorithm 3 Overwritten dictionary and graph generation
for n← 0 to Tn − 1 do

for a ∈ accesses(trace(n)) do
if type(a) = written then

for k ∈ addresses(a) do
if Ok

n is available,
W ⇐ {(Ok

n, a)}
end if
Ok

n ← a
end for

end if
end for
for k ∈ On−1 −On do

Ok
n ← Ok

n−1
end for

end for

We can define some functions to use D and W more
easily.

Algorithm 4 Dependency graph generation
DE ← {}
for n← 0 to Tn − 1 do

for a ∈ accesses(trace(n)) do
if type(a) = read then

for k ∈ addresses(a) do
if k ∈ On then

DE ⇐ {(Ok
n, a)}

end if
end for

end if
end for

end for

• depends(a : InstanceAccess) returns the set of in-
stance accesses that influences a, that is, depends(a) =⋃

(k,a)∈DE
{k}. a should be a read access and assume

depends(a) = {} if a is not a read access.
• forwards(a : InstanceAccess) returns the set

of instance accesses that depends on a, that is,
forwards(a) =

⋃
(a,k)∈DE

{k}. a should be a written
access and assume forward(a) = {} if a is not a
written access.

• overwrites(a : InstanceAccess) returns the set of
instance accesses that have overwritten the value writ-
ten by a, that is, overwrites(a) =

⋃
(a,k)∈W {k}.

a should be a written instance access and assume
overwrites(a) = {} if a is not a written access.

We can define the abstraction functions for instruction
accesses.
• depends(A : InstructionAccess) =⋃

a∈instanceaccesses(A) [g(a)] where
g(a) =

⋃
d∈depends(a) (instructionaccess(d)).

• forwards and overwrites are similarly defined.
For real application, the whole dependency graph is too

huge for an analyzer to understand. Moreover, most ana-
lyzers do not concern about the every dependency relation,
but they only want to know the process to calculate a
specific value. For example, the instance accesses used as
the arguments for an external routine generally decide the
behavior of the program. Therefore, analyzers will want to
know how the argument values have been calculated.

Thus we need to extract a subset from dependency graph
illustrating the relations connected to the user specified
value. We call the subsets of dependency graph the sub-
dependency graphs. And a relevant subdependency graph
is a subdependency graph which extracts only the relations
directly and indirectly connected to the value designated by
the user.

A subdependency graph S has the following characteris-
tics.
• S is a subset of dependency graph D, that is,

S = (SV , SE) where SV ⊆ DV and SE ⊆ DE .
• SV =

⋃
(f,s)∈SE

{f, s}

C. Expression Tree

An obfuscated program generally has more complicated
calculation process than the original program. For example,
an obfuscated calculation procedure may have unnecessary
move instructions. The analyzers may not be interested in
the meaningless instructions such as pointless moves.

Expression tree is the graph generated from a relevant
subdependency graph, skipping the instructions that the an-
alyzer does not interest in. Since an expression tree does not
show the uninteresting behaviors, you can see the semantic
of the program more vividly.

To generate an expression tree, you should first set a sub-
dependency graph S and the set of interesting instructions
N . An interesting instruction is the instruction that you want
to include in the expression tree.

The fundamental difference of expression tree from the
subdependency graph is the existence of bypassing edges.
Suppose that there are three different instance accesses a, b,
and c, and a influences b and b influences c. If b belongs
to an instance of uninteresting instruction, you want to skip
the edges going through b and want a bypassing edge (a, c)
instead. Because of bypassing edge, an expression tree is
not necessarily a subset of dependency graph.

An expression tree E is defined as follows:
• E = (EV , EE)
• EV : {InstanceAccess} ⊂ SV

• EE : {(InstanceAccess, InstanceAccess)}
• EE is not necessarily a subset of SE because EE can

have the bypassing edges. However, still ∀(f, s) ∈ EE ,
type(f) = written and type(s) = read.

The key point of expression tree generation algorithm is
finding the bypassing edges. The function forwardbypass
can be used to find bypassing edges.
• forwardbypass(i : InstanceAccess) returns the set

of read instance accesses which should replace i. i must
be a read instance access, and every item in the returned
set of forwardbypass will be read instance access.

• backwardbypass can be defined similarly, but we only
use forwardbypass.

Algorithm 6 shows the algorithm to generate the expres-
sion tree E from S and N , using forwardbypass function.

The implementation of expression tree in Trudio uses a set
of interesting operation codes instead of a set of interesting
instructions. In other word, for a designated set of interesting
operation codes P , N = {i ∈ Zi|opcode(i) ∈ P}.

VI. OPTIMIZATION OF OBFUSCATED PROGRAM

A. Optimization

The optimization in this paper aims to transform an obfus-
cated program into more analyzable shape. An obfuscated

Algorithm 5 forwardbypass function
def forwardbypass(i : InstanceAccess)

if instruction(instance(i)) ∈ NV then
return {i}

else
result← {}
for j ∈ forwards(i) do

for k ∈ accesses(j) do
if type(k) = read and k ∈ SV then

result⇐ forwardbypass(k)
end if

end for
end for
return result

end if
end def

Algorithm 6 Expression tree generation
EV ← {}
EE ← {}
for (f, s) ∈ SE do

if instruction(instance(f)) ∈ NV then
bypasses← forwardbypass(s)
EV ⇐ {f} ∪ bypasses
EE ⇐

⋃
k∈bypasses{(f, k)}

end if
end for

program will be easier to analyze if unnecessary instructions
and decoding routines are eliminated.

Therefore, our optimization is basically finding the inner
instructions to be dropped from the program. The external
instructions cannot be dropped, but they are considered
important throughout the whole optimization process. In
addition, removal of an instruction may requires some mod-
ifications on other instructions or data in memory. Thus, an
optimization is defined as a 3-tuple of (dropped instructions,
modified instructions, modified data).
• Optimization = (Dropped,Modified,Data)
• Dropped : {Instruction} is the set of dropped in-

structions. Every instruction in Dropped must be inner
instruction.

• Modified : {Instruction→ Instruction} is the dic-
tionary mapping from original instruction to modified
instruction.

• Data : {Address→ Byte} is the dictionary mapping
from memory address to modified byte(integer).

Our optimization is in seven steps:
1) Milestone establishment
2) Trace pruning by dependency analysis
3) Removal of meaningless instructions
4) Removal of effectless instructions

5) Removal of useless stack operations
6) Instruction chain reduction
7) Executable patch

Steps 1 and 7 are necessary, and steps 2 through 6 are
optional. Step 7 is technically not an optimization step,
but it is generating an executable program reflecting the
optimization.

B. Milestone Establishment

Some instructions in the program must not be deleted,
and those instructions are called milestones. Milestone es-
tablishment finds and sets the milestones, and it is the fist
and mandatory step of optimization.

Milestones are searched by three criteria: instruction
calling an external routine, relevant instructions to external
instruction, and the last instructions in basic blocks. We
assumed every external instruction is important, so the in-
structions which call or directly affect an external instruction
should be milestones. And the last instruction of a basic
block has actually changed the control flow, so they should
not be eliminated.

For the simplicity of writing, let us define a function
influences.
• influences(I : Instruction) returns the set of instruc-

tions on which an instruction access of I influences,
that is, influences(I) =

⋃
A∈g(I){instruction(A)}

where g(I) =
⋃

k∈accesses(I) forwards(k)

Then, the set of milestones M is
M = {k ∈ Zi|p1(k) or p2(k) or p3(k)}

where p1(k) = (out(k) 6⊆ Zi), p2(k) =
({j ∈ influences(k)|j /∈ Zi} 6= {}), and p3(k) =
(k = the last item of instructions(block(k))).

C. Trace Pruning by Dependency Analysis

The instructions directly or indirectly influencing mile-
stones are called relevant instructions. Since the relevant
instructions also affect to the behavior of the program, they
should not be removed.

Algorithm 7 shows how to find the set of relevant in-
structions. R is the set of instances belonging to relevant
instructions.

D. Removal of Meaningless Instructions

An instruction is meaningless if it has never affected
the status of the system throughout the whole run trace.
There are two cases: meaningless branch and instructions
unchanging the status.

If a control flow instruction is not at the end of the block,
the instruction is meaningless. The only instructions at the
end of a block have effectively changed the control flow.
The control flow instructions which has never changed the
control flow cannot be meaningful.

Another case is instructions that have not changed the
status. In other word, for an inner instruction I , I is

Algorithm 7 Trace pruning by dependency analysis
def relevant(i : Instance,R : {Instance})

if i /∈ R and place(instruction(i)) = inner then
R⇐ {i}
for a ∈ accesses(i) do

for d ∈ depends(a) do
R⇐ relevant(d,R)

end for
end for

end if
return R

end def

R← {}
for I ∈M do

for i ∈ instances(I) do
R← relevant(i, R)

end for
end for
Dropped⇐ {I ∈ Zi|I /∈ {instruction(i)|i ∈ R}}

meaningless if ∀i ∈ instances(I), ∀a ∈ accesses(i),
type(a) = written and value(writing(a)) = value(a).

E. Removal of Effectless Instructions

An instruction is effectless if and only if the instruction
influences only the dropped instructions. Therefore, this
optimization step is dependent on the optimization progress.
The set of all effectless instructions is
{k ∈ Zi|influences(k) ⊆ Dropped}

F. Removal of Useless Stack Operations

This section describes removal of needless stack opera-
tions. The discussions in this section is heavily dependent
on the implementation of the stack operations. Thus, this
section is written assuming IA32.

IA32 has stack operations such as PUSH and POP. A
portion of memory is assigned as a stack. The memory
address of the top item of the stack is saved in ESP register,
and the bottom item in EBP register. The stack is grown
to the lower address, that is, the value of ESP is decreased
when a new item is pushed into the stack.

You can consider the stack operations in IA32 are just
wrapping instructions. For example, PUSH instruction is a
composite of MOV the value to the stack and SUB to the
ESP register. In other word, there are no fine restrictions in
using stack such as a rule that the stack must be accessed
only with PUSH and POP instructions. For example, you
can access the 4th value from top in the stack using MOV
EAX, [ESP+0x10].

Hence, to remove a stack operation, some instructions run
between PUSH and POP may need modification. Suppose
you want to delete a pair of PUSH and POP, but there

is MOV EAX, [ESP+0x10] instruction right after PUSH.
Then this instruction should be modified to MOV EAX,
[ESP+0xC] since ESP will be larger by 4 if the PUSH is
removed.

While the removal of stack operation is tricky, finding
useless stack operation is rather easy. A stack operation
can be used in two ways: value and position. A normal
PUSH should be used to save a meaningful value to the
stack. In this case, some instructions will use the value
pushed into the stack by PUSH instruction. Such PUSH and
corresponding POP instruction pairs are value-meaningful.
A stack operation is called position-meaningful if there is an
instruction that overwrites to the location where the pushed
value is located. If a stack operation is not neither value-
meaningful nor position-meaningful, we can remove the
stack operation pair.

The first step to find the removable stack operations is
to find pairs of push and pop. In IA32, after a PUSH was
executed, if ESP goes higher than the value of ESP before
the PUSH executed, we can consider the pushed value is
now popped from the stack. Therefore, we can find the pop
instruction of PUSH traversing the instances following the
instances of PUSH.

While we find the push and pop pairs, we will also
traverse the instructions between push and pop. We call
these instructions the insider instructions. We will also find
the instructions that need modification among the insiders.
These instructions are called affected instructions.

Some push and pop pairs are not valid. If the value
pushed to the stack by a PUSH instruction is popped by
multiple instructions, we consider these stack operations are
improper. If the insiders and affected instructions of a push
pop pair are not consistent for each instance of push and
pop, this stack operation is also inappropriate.

Algorithm 8 shows the algorithm to find proper stack
operation pairs. SO is the set of 4-tuples of push instruction,
corresponding pop instruction, size of pushed value, and
affected instructions.

• memop(i : Instance) returns a read or writ-
ten instance access of i accessing the memory.
instruction(i) must be inner instruction. If there is
no memory operand, this function will returns {}.
The returned set of memop will have maximum one
item since the instructions of IA32 have one mem-
ory operand at most. That is, memop(i) = {a ∈
accesses(i)|space(address(a)) = memory}

• espaccess(i : Instance) returns the set of in-
stance accesses reading from the ESP register. That
is, espaccess(i) = {a ∈ accesses(i)|type(a) =
read, address(a) = (register, esp)}

• pushedvalue(i : Instance) returns the written in-
stance access belonging to i writing the value into the
stack. instruction(i) must be inner push instruction.

Algorithm 8 Push and pop pairing
SO ← {}
for I ∈ Zi do

if opcode(I) ∈ {PUSH,PUSHF,PUSHA} then
pop← {}
psz ← nil ; pushed size
ins← nil ; insiders
aff ← nil ; affected instructions
for i ∈ instances(I) do
esp← espaccesses(i)
; |esp| must be 1
k ← index(i)
pszi ← size(pushedvalue(i))
insi ← {}
affi ← {}
do
k ← k + 1
if k ≥ Tn then goto break
insi ⇐ {instruction(trace(k))}
mem← memop(trace(k))
if mem 6= {} and

address(mem) is in stack area and
address(mem) ≥ esp then

affi ⇐ {instruction(trace(k))}
end if
espn ← espaccess(trace(k))

while |espn| = 1 and value(espn) ≥ value(esp)
if (psz 6= nil and psz 6= pszi) or

(ins 6= nil and ins 6= insi) or
(aff 6= nil and aff 6= affi) then

goto break
end if
psz ← size(pushedvalue(i))
ins← insi
aff ← affi
pop⇐ {instruction(trace(k))}

end for
if |pop| 6= 1 then goto break
SO ⇐ {(I, pop, psz, aff)}

end if
break:
end for

After we got the set of stack operation pairs, we must find
the useless stack operations. We first find value-meaningful
or position-meaningful stack operations. If both are empty,
we could choose the stack operations to remove. Algorithm
9 shows the algorithm to find useless stack operations.

Algorithm 10 shows a brief sketch of stack operation
removal algorithm. Removal of stack operations is heavily
dependent on the detail of the instruction set architecture,
hence we do not discuss the details in this paper.

Algorithm 9 Search of useless stack operation
SOuseless ← {}
for so ∈ SO do

(push, pop, psz, aff)← so
valmean← {}
posmean← {}
for i ∈ instances(push) do

pushed← pushedvalue(i)
valmean⇐ forwards(pushed)
posmean⇐ overwrites(pushed)

end for
if valmean = {} and posmean = {} then

SOuseless ⇐ so
end if

end for

Algorithm 10 Stack operation removal
for so ∈ SOuseless do

(push, pop, psz, aff)← so
if ∃m ∈ aff , m is not supported then

goto break
end if
Dropped⇐ {push}
Drop or modify pop
for m ∈ aff do

Move displacement of m by −psz
end for

break:
end for

G. Instruction Chain Reduction

Data encoding is a common obfuscation technique. A
program obfuscated with this technique saves the data in
encoded form and has routines to decode them. For example,
some programs obfuscated with virtualization obfuscation
have the decoding routines for byte codes. When the main
block of VM fetches a byte code, the loaded value is
not really a byte code but it requires decoding process.
This is why the previous reversing techniques are barely
possible to apply to the programs obfuscated by recent
obfuscators. However, if we can remove decoding routines
and make the program directly fetch the decoded byte code
from memory, then those works may be applicable for
the optimized programs. Moreover, the executable program
without decoding routines and encoded data will be much
simple to analyze.

This optimization technique is aimed to remove the de-
coding routines. We observed two facts: the encoded data
must be decoded before they are used, and the data in the
middle of decoding process are used only by the decoding
routine. Inspired by these observations, we defined reducible
instruction chain and designed the algorithms to find and

remove reducible instruction chains.
A reducible instruction chain is composed of source,

destination, member instructions, and replacing instruction.
Source of a chain is the instruction access that first fetches
the encoded data. And then, the value goes through the
member instructions, and finally decoded value is saved into
the destination of chain. A chain can be reduced in the
following steps:

1) Save the value of chain’s destination into the location
of chain’s source.

2) Replace the instruction of chain’s destination with
replacing instruction.

3) Drop all member instructions other than replaced
instruction.

Through this procedure, we can remove the decoding rou-
tines and optimize the program to directly fetch the decoded
data from memory.

However, some instruction chains cannot be reduced even
if we found them. For example, on the architectures whose
instructions have different lengths(CISC), if the length of the
instruction of chain’s destination is shorter than replacing
instruction, then it is not possible to replace a shorter
instruction with a longer one.

Formally, a reducible chain can be represented as a 4-
tuple: (source, destination, members, replacing)
• source : InstructionAccess is the instruction access

where encoded data are first loaded. source must be
read from memory.

• destination : InstructionAccess is the instruc-
tion access where decoded data are finally saved.
destination must be written access.

• members : {Instruction} is the set of instructions
in the reducible chain. The instructions of source and
destination should be in members. All instructions in
{I ∈ members|I 6= instruction(destination)} will
be dropped in the reduction procedure.

• replacing : OPCODE is used to reduce the instruc-
tion chain. In the reduction process, the instruction
of destination is replaced by replacing to let the
program directly get the decoded data into destination.
However, you may notice that replacing is just an oper-
ation code, not a full instruction. A replacing instruction
is always a move instruction from source to destination,
so we already know the operands and the action. But
move operation can be various as Intel architecture has
the plain move, move with sign extension, move with
zero extention, etc. Thus replacing must indicate one
of move operation codes.

When we find recudible instruction chains, we first find
the starting points of candidate chains and propagate them.
To find the starting points of reducible chains, we assumed
encoded data are read only by one instruction and the
addresses where the encoded data are saved will not be

accessed by other instructions. This assumption means that
an obfuscated program will not have more than one decoding
routines of the same algorithm.

Algorthm 11 shows the mechanism to find the starting
points of reducible chains.

Algorithm 11 Search of starting points of reducible instruc-
tion chains
RCfirst ← {}
for I ∈ Zi do

for A ∈ accesses(I) do
if type(a) 6= read then goto break
for a ∈ instanceaccesses(A) do

if space(address(a)) 6= memory then goto break
for j ∈ addresses(a) do

if accessat(j) 6= {I} then goto break
end for

end for
end for
RCfirst ⇐ {I}

break:
end for

From the starting points RCfirst found in Algorithm 11,
we can propagate the reducible chain when an instruction in
the chain influences exactly one instruction. Algorithm 12
shows the reducible chain propagation algorithm. The fol-
lowing shows the definition of functions about instructions
used in Algorithm 12.
• source(i : Instruction) returns the read instruction

access that is the source operand of trace instruction
i. This function will return nil if there is no source
operand.

• destination(i : Instruction) returns the written in-
struction access that is the destination operand of trace
instruction i. This function will return nil if there is no
destination operand.

Algorithm 13 shows the algorithm reducing an instruction
chain. If any assertion in the for loop is violated, the
reducible chain cannot be reduced, and the progresses for
the chain should be restored. Assume that the function
keys appeared in Algorithm 13 returns the key set of the
dictionary.

H. Executable Patching

Executable patching is the final step of optimization.
This step generates an optimized version of the obfuscated
program using the information derived from the optimization
procedure. This step includes replacing the dropped instruc-
tions into no operation(NOP) and applying the modifications
on instructions and data.

However, it requires attention while handling control in-
structions. If a control instruction is removed, the instruction
which should be executed after the control instruction may

Algorithm 12 Propagation of reducible instruction chains
RC ← {}
for f ∈ RCfirst do

if source(f) 6= nil then
next← f
chn← {}
rpl← nil
repeat

if opcode(next) is move opcode then
rpl← opcode(next)

end if
chn⇐ next
if |influences(next)| 6= 1 then

break repeat
end if
next← influences(next)

end repeat
if rpl 6= nil then

RC ⇐ (source(f), destination(next), chn, rpl)
end if

end if
end for

Algorithm 13 Instruction chain reduction
for rc ∈ RC do
(src, dst, chn, rep)← rc
Modified⇐ {(instruction(dst)→ ”rep dst src”)}
srcinst← instanceaccesses(src)
dstinst← instanceaccesses(dst)
assert |srcinst| = |dstinst|
for k ← 0 to |srcinst| do
s← srcinst[k]
d← dstinst[k]
assert size(s) = size(d)
as ← address(s)
ad ← address(d)
for l← 0 to size(s)− 1 do

assert as + l /∈ keys(Data)
Data⇐ {((as + l)→ value(d, ad + l))}

end for
end for
Dropped⇐ (chn− {instruction(dst)})

end for

not follow the control instruction. This will make an error
while running the optimized program, so we have to preserve
such control instructions.

VII. IMPLEMENTATION DETAIL

A. Target Architecture

Intel architecture in 32-bit, IA32 is the most widely used
instruction set architecture, and Microsoft Windows is the
most popular personal computer operating system in the

market. Thus our implementation targets to the programs
for Microsoft Windows running on IA32.

B. Tracing

Prior to the implementation of analysis techniques, we
should have developed a tracing tool. At first, we had
considered using debuggers suchas IDA Pro [6] or OllyDbg
[7]. But these debuggers use the single step exception to
trace, thus they could not properly trace some obfuscated
executable programs. Secondly, we had examined emula-
tors. There are several good emulators such as QEMU [8]
or Bochs [9]. But these emulators run the whole system
whereas we needed an emulator running on an application
program. So, we chose Pin [10].

We wrote a tracing tool using the APIs of Pin. The
tracing tool was designed to record and monitor every
executed instruction(instance) and all read or write accesses
on register or memory. On the other hand, this tracing tool
does not track the instructions in external modules since they
are out of scope of the analysis. The tracing tool records
only the first instruction of called external module as external
instruction. However, instance accesses are still recorded for
an external instruction.

This tool is designed to be separated from the analysis
process. Therefore, if you write a new tracing tool, you can
use it only if it generates run traces of the same format.

The tracing tool is available at [11].

C. Trudio

The analysis algorithms described so far are implemented
and integrated into one analysis tool named Trudio. The
name Trudio is the compound word of trace and studio. It
shows the characteristic of this tool, which does not auto-
matically reverse the obfuscation, but provides the analysis
methods and optimizing functionality to help analyzing the
obfuscated software.

Trudio is developed in Java language with Swing GUI
toolkit, distorm3 [12] as disassembler, and Netwide Assem-
bler [13] as assembler. The total lines of code is over 13000
lines.

Trudio is available at [5].

VIII. EXPERIMENTS AND RESULTS

A. Experiment Overview

To test the effectiveness of the approach presented in
this paper, we designed experiments examining the method-
ologies for structure analysis, semantic analysis, and opti-
mization. For the experiments, we wrote sample programs:
imperative factorial(impfact), imperative fibonacci(impfibo),
recursive factorial(recfact), and recursive fibonacci(recfibo).
recfibo was used as a motivating example. Every sample
program calculates a factorial or fibonacci number, prints
out the value, and terminates.

We intentionally designed a sample program to get no
input from user and has one execution path since the problem
of generating test cases covering many execution paths is out
of scope of this paper.

We obfuscated the executable programs using VMProtect,
and the obfuscation was applied on the main calculation
routine of each sample program.

The fact that we chose VMProtect does not mean Trudio
is limited to the programs obfuscated using virtualization.
We chose VMProtect just because we supposed that this is
one of the most advanced obfuscators in the market.

Table I shows the summary of each sample program.

Name Original VMProtect
Instructions Instances Instructions Instances

impfact 322 407 896 222036
impfibo 324 465 899 294173
recfact 316 428 952 248648
recfibo 328 734 994 784807

Table I
SUMMARY OF SAMPLE PROGRAMS

Figure 3 shows the examples of control flow graphs
generated from impfact. Figure 3a shows the CFG of orig-
inal impfact, and Figure 3b shows the CFG of obfuscated
impfact. The obfuscation was applied to the codes at the
block 8 and 9 in the original program. You can easily
see that the structure of original program and obfuscated
program are completely different. The obfuscated program
has a main routine of virtual machine to read, decode and
call the handlers at the block 9 with many handlers.

(a) Original (b) Obfuscated

Figure 3. Control flow graphs of impfact

The sample programs and experimental results are avail-
able at [14].

B. Structure Analysis

All the control flow graphs generated from the obfuscated
programs look similar to Figure 3b; one main block and
many handlers. Static analyzers could not find the edges
from the main block to handlers since the indirect calls are
used when the main block calls handlers. On the contrary,
we could figure out all the edges from the main block to
handlers.

We could evaluate the utility of the schemes to find the
main block of virtual machine. As we previously discussed,
an executable program obfuscated using virtualization ob-
fuscation has its main block, and the main block is called
the most times and has the most number of out edges.

Table II shows the name of the block executed the most
and the second most times. The table also enumerates the
name of the blocks that have the most and the second most
out edges with the number of out edges. You can see the
block that is executed most times has the largest number
of out edges. Those blocks were actually the main blocks
of the embedded virtual machines. You also find that the
big gap exists between the most block and the second most
block, and it proves that the property we guessed about main
blocks were correct.

Name
Execution count Out edges
1st 2nd 1st 2nd

Block / # Block / # Block / # Block / #
impfact 9 / 3062 12 / 1168 9 / 17 2, 4 / 2
impfibo 9 / 3755 13 /1424 9 / 16 2, 4, 10, 13 / 2
recfact 10 / 3239 13 / 1274 10 / 16 2, 4, 25 / 2
recfibo 10 / 10769 13 / 4271 10 / 15 30 / 3

Table II
VIRTUAL MACHINE MAIN BLOCK

C. Semantic Analysis

A sample program calculates an integer value, prints out
the value via printf function, and terminates. The argument
delivered to printf function is pushed into stack right before
printf function is called, and the value is the result of the
calculation routine. Thus, the pushed value is a good starting
point to generate a relevant subdependency graph to find out
how the printed value has been calculated. We generated
expression trees from the extracted subdependency graph
and the set of operation codes appeared in the expression tree
of original programs excluding move and stack instructions.

You have already seen the visualized expression trees
generated from original recfibo and obfuscated recfibo as
a motivating example in Figure 1a and Figure 1b. Both
expression trees are generated from the relevant subdepen-
dency graph extracted from the printed value, and shows
only the instructions of operation code ADD. Operation
codes ADD, MOV, POP, PUSH, XOR appeared in the
relevant subdependency graph of original recfibo, and MOV,
POP, PUSH were excluded because they are move or stack
operations, and XOR was used to compare a value to 0.
Thus we chose ADD to filter the instructions that appeared
in the expression tree.

Those two graphs are identical in structure and values in
vertices. The only difference is that the ADD instruction
belongs to block 15 in the original program whereas it
belongs to block 14 in the obfuscated program. You can
infer block 14 is the VM handler for addition.

Similarly, we generated and compared the expression trees
of original and obfuscated versions of each sample program.
Table III shows the operation codes we used for expression
tree filtering. Ori indicates the operation codes appeared in
original version, Obf means the obfuscated version, and Use
lists the operation codes filtering the expression tree. As we
stated before, the operation codes were chosen from the OP-
CODEs appeared in the expression tree of original version
excluding move and stack operations. While we obfuscate
recfact, however, VMProtect substitutes SUB instruction by
ADD instruction, so we produces the expression tree with
ADD instructions for obfuscated version instead of SUB of
original program.

Name OPCODEs

impfact
Ori ADD, IMUL, MOV, PUSH
Obf ADD, CWDE, IMUL, MOV, POP, PUSH
Use ADD, IMUL

impfibo
Ori ADD, MOV, PUSH
Obf ADD, CWDE, MOV, POP, PUSH
Use ADD

recfact
Ori IMUL, MOV, PUSH, SUB
Obf ADD, AND, CWDE, IMUL, MOV, NOT, POP, PUSH
Use IMUL, SUB / ADD, IMUL

recfibo
Ori ADD, MOV, POP, PUSH, XOR
Obf ADD, AND, CWDE, MOV, NOT, PUSH
Use ADD

Table III
SEMANTIC EXTRACTION SCORE

The expression trees of original program and obfuscated
version were identical for impfact, impfibo, and recfibo.
Since the obfuscated recfact used ADD instruction to decre-
ment a variable instead of SUB instruction as in the original
program, the graphs of recfact were slightly different.

The result shows the semantic analysis approach presented
in this paper properly discloses the behavior of the obfus-
cated program.

D. Optimization

We applied the proposed optimization techniques to the
obfuscated program of each sample. Every optimized exe-
cutable program runs properly and generates the identical
result with the obfuscated program before it was optimized.

The basic measure of the optimization is the number of
dropped instructions and the number of instances belong-
ing to the survived instructions. The number of survived
instances is calculated with the following equation:∣∣∣⋃I∈{k∈Zi|k/∈Dropped} instances(I)

∣∣∣
Table IV shows the comparisons of the numbers of

survived instructions and instances before and after opti-
mization. Ori means the numbers of original programs while
Opt indicates the numbers of optimized versions.

You can see that the number of instructions are reduced
about 42 to 45%, and the number of instances are reduced by
50 to 63%. You can see that the decreasing rate of instances

Name Instructions Instances
Ori Opt % Ori Opt %

impfact 896 500 -44.2% 222036 87322 -60.7%
impfibo 899 489 -45.6% 294173 108589 -63.1%
recfact 952 533 -44.0% 248648 123569 -50.3%
recfibo 994 576 -42.1% 784807 353445 -55.0%

Table IV
OPTIMIZATION SCORE

is bigger than the rate of the instructions. The reason is that
many of the dropped instructions are placed in the virtual
machine main block or handlers, which run multiple times.

Note that the executable patching step may insert some
jump instructions to preserve the address of each instruction,
and the number of optimized instances may be larger if you
count the number of instructions really executed from the
patched executable program.

As the number of instructions are decreased and decoding
routines are eliminated from VM main block and handlers,
we can expect for the analysis of optimized program to be
easier than analysis the original obfuscated program.

IX. RELATED WORK

G. Wroblewski systemized and described the traditional
obfuscation techniques for executable programs, including
dead code insertion, reordering of control flow, and data ob-
fuscation in his PhD thesis [15]. C. Linn and S. Debray [16]
introduced an obfuscation technique to improve resistance to
static disassembly.

S. Udupa et al. [17] suggested an automatic deobfuscation
technique. This technique is, however, a static approach, so
it is totally different from our approach.

R. Rolles [1], M. Sharif [2], and N. Falliere et al.
[18] formerly discussed the reversing techniques for the
virtualization obfuscated programs. However, as previously
discussed, these techniques have their own assumptions on
the obfuscation techniques, so they are inappropriate for
the modified obfuscation techniques that are not fit to the
assumptions. On the contrary, our work assumes nothing
about the obfuscation applied to the target program, it is
applicable for any obfuscation technique.

K. Coogan et al. [19] tried to deobfuscate the softwares
obfuscated by virtualization obfuscation techniques with
dynamic approach. Their work finds the instructions relevant
to the external routine calls and slice the program to contain
only the relevant instructions. Their work seems to be
similar to our trace pruning optimization with milestone
establishment. However, their ultimate goal is to present an
fully automatic program slicer for deobfuscation, but our
goal is to provide a sound and general dynamic analysis
tool.

X. CONCLUSION

In this paper, we presented the dynamic program analysis
tool Trudio, which has three analysis purposes: structure
analysis, semantic analysis, and optimization. Trudio has the
implementation of several algorithms for these functionali-
ties. This paper describes the details of the algorithms imple-
mented in Trudio. Furthermore, we verified the effectiveness
of this approach by experiments.

Using the analysis methods provided by Trudio, you can
reveal the structure and semantic of obfuscated programs
and transform an obfuscated program into more analyzable
shape. It is expected for the security experts to save time for
analyzing the obfuscated malwares.

However, our work has some weaknesses. First of all, we
have not proved the safety of the optimization techniques.
In other word, an optimized program is not guaranteed to be
able to imitate the execution paths appeared in the run trace.
The proof of the safety of each optimization technique must
be studied further.

Secondly, dynamic approach has its inherent limitation:
coverage problem. Dynamic analysis is based on the run
traces of the target program, and the algorithms assume the
program only runs the execution paths appeared in the run
traces. Hence, the analysis results acquired from dynamic
approach may not be true for the other execution paths.
To complement the limitation of the dynamic approach, we
may need to use multiple run traces extracted from several
executions of the same program.

REFERENCES

[1] R. Rolles, “Unpacking virtualization obfuscators,” in Pro-
ceedings of the 3rd USENIX conference on Offensive tech-
nologies, ser. WOOT’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 1–1.

[2] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic
reverse engineering of malware emulators,” in Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
94–109.

[3] VMProtect Software, “Vmprotect software protection,”
http://vmpsoft.com/, 2011.

[4] R. BenzmÃijller and S. Berkenkopf, “G data malware report,
half-yearly report january - june 2011,” G Data SecurityLab,
Tech. Rep., 2011.

[5] http://trudio.googlecode.com/files/Trudio.zip, 2011.

[6] Hex-Rays SA, “IDA Pro,” http://www.hex-
rays.com/products/ida/index.shtml, 2011.

[7] O. Yuschuk, “OllyDbg,” http://ollydbg.de/, 2011.

[8] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
USENIX 2005 Annual Technical Conference, 2005, pp. 41–
46.

[9] K. Lawton, “bochs: The open source ia-32 emulation project,”
http://bochs.sourceforge.net/, 2011.

[10] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in SIGPLAN Conference on Programming
Language Design and Implementation, 2005, pp. 190–200.

[11] http://trudio.googlecode.com/files/tracing.zip, 2011.

[12] G. Dabah, “diStorm3,” http://code.google.com/p/distorm/,
2011.

[13] J. H. Simon Tatham, “The netwide assembler,”
http://www.nasm.us/, 2011.

[14] http://trudio.googlecode.com/files/experiments.zip, 2011.

[15] G. Wroblewski, “General method of program code obfusca-
tion,” Ph.D. dissertation, Wroclaw University of Technology,
Institute of Engineering Cybernetics, 2002.

[16] C. Linn and S. Debray, “Obfuscation of executable code to
improve resistance to static disassembly,” in Proceedings of
the 10th ACM conference on Computer and communications
security, ser. CCS ’03. New York, NY, USA: ACM, 2003,
pp. 290–299.

[17] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation:
Reverse engineering obfuscated code,” Reverse Engineering,
Working Conference on, vol. 0, pp. 45–54, 2005.

[18] N. Falliere, P. Fitzgerald, and E. Chien, “Inside the jaws of
trojan.clampi,” Symantec Corp., Tech. Rep., 2009.

[19] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of
virtualization-obfuscated software: a semantics-based ap-
proach,” in Proceedings of the 18th ACM conference on
Computer and communications security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 275–284.

	I Introduction
	II Overview
	II-A Dynamic Approach
	II-B Trudio
	II-C Motivating Example

	III Run Trace and Terminologies
	IV Structure Analysis of Obfuscated Program
	IV-A Control Flow Graph
	IV-B Virtual Machine
	IV-C Access Map

	V Semantic Analysis of Obfuscated Program
	V-A Value History
	V-B Dependency Tracker
	V-C Expression Tree

	VI Optimization of Obfuscated Program
	VI-A Optimization
	VI-B Milestone Establishment
	VI-C Trace Pruning by Dependency Analysis
	VI-D Removal of Meaningless Instructions
	VI-E Removal of Effectless Instructions
	VI-F Removal of Useless Stack Operations
	VI-G Instruction Chain Reduction
	VI-H Executable Patching

	VII Implementation Detail
	VII-A Target Architecture
	VII-B Tracing
	VII-C Trudio

	VIII Experiments and Results
	VIII-A Experiment Overview
	VIII-B Structure Analysis
	VIII-C Semantic Analysis
	VIII-D Optimization

	IX Related Work
	X Conclusion
	References

